Noticias

Perfect encounter between ROS and Jetson nano XR phage bionic six-legged hexapod spider robot
Hexapod walking mechanism: The XR bionic hexapod spider robot uses 18 XR-S270 35KG bi-weekly serial bus servos as the hexapod walking mechanism motion joints, which gives it excellent terrain adaptability. Whether it is in rugged mountains, muddy swamps or narrow gaps, it can shuttle freely.
Intelligent perception system: Combined with the sensor interface of ROS, the XR bionic hexapod spider robot can obtain environmental information in real time, and process and analyze it through algorithms such as deep learning. This enables the robot to more accurately identify targets, judge obstacles and plan paths.
Intelligent perception system: Combined with the sensor interface of ROS, the XR bionic hexapod spider robot can obtain environmental information in real time, and process and analyze it through algorithms such as deep learning. This enables the robot to more accurately identify targets, judge obstacles and plan paths.

Raspberry Pi Bionic Hexapod and Jetson Nano Hexapod: Technical Differences and Application Considerations
Raspberry Pi Bionic R1 Hexapod Robot
Raspberry Pi Bionic Hexapod is suitable for application scenarios that have high requirements for real-time and stability, but low requirements for AI functions. For example, tasks such as environmental monitoring and terrain exploration can be achieved with Raspberry Pi Bionic Hexapod.
Jetson Nano Bionic J1 Hexapod Robot
Jetson Nano Hexapod is more suitable for application scenarios that require high-performance computing and AI functions. For example, in tasks such as autonomous navigation, obstacle detection, and target recognition, Jetson Nano Hexapod can exert its powerful AI computing capabilities to achieve a higher level of intelligence.
Raspberry Pi Bionic Hexapod is suitable for application scenarios that have high requirements for real-time and stability, but low requirements for AI functions. For example, tasks such as environmental monitoring and terrain exploration can be achieved with Raspberry Pi Bionic Hexapod.
Jetson Nano Bionic J1 Hexapod Robot
Jetson Nano Hexapod is more suitable for application scenarios that require high-performance computing and AI functions. For example, in tasks such as autonomous navigation, obstacle detection, and target recognition, Jetson Nano Hexapod can exert its powerful AI computing capabilities to achieve a higher level of intelligence.

How to use raspberry Pi to bulid raspberry Pi hexapod robot for students
Building a Raspberry Pi Hexapod robot is a captivating and educational project that can inspire students to explore the exciting field of robotics. By combining the Raspberry Pi's computing power with the versatility of servo motors, students can bring this six-legged marvel to life, learning valuable skills in electronics, programming, and mechanical design along the way. Through this hands-on experience, students can develop a deeper understanding of technology, problem-solving, and the joy of creating something remarkable.